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Therapeutic potentials of superoxide dismutase

Introduction

Superoxide dismutases (SODs) are a group of metalloenzymes 
that are found in all kingdoms of life. SODs form the front line 
of defense against reactive oxygen species (ROS)-mediated 
injury.[1] These proteins catalyze the dismutation of superoxide 
anion free radical (O2

-) into molecular oxygen and hydrogen 
peroxide (H2O2) [Figure 1a] and decrease O2

- level which 
damages the cells at excessive concentration.[2] This reaction 
is accompanied by alternate oxidation-reduction of metal 
ions present in the active site of SODs.[3,4] Based on the metal 
cofactors present in the active sites, SODs can be classified 
into four distinct groups: Copper-Zinc-SOD (Cu, Zn-SOD) 
[Figure 1b], Iron SOD (Fe-SOD), Manganese SOD (Mn-SOD), 
and Nickel SOD.[5,6] The different forms of SODs are unequally 
distributed throughout all biological kingdoms and are located 
in different subcellular compartments.

SODs constitute a very important antioxidant defense 
against oxidative stress in the body.[7] Several studies have 
been performed that reveal the therapeutic potential and 
physiological importance of SOD.[8] The enzyme can serve as 
an anti-inflammatory agent and can also prevent precancerous 
cell changes.[2] Natural SOD levels in the body drop as the 
body ages[9] and hence as one age, one becomes more prone 
to oxidative stress-related diseases. SOD is used in cosmetics 
and personal care products as an anti-aging ingredient and 
antioxidant due to its ability to reduce free radical damage 
to the skin, therefore preventing wrinkles, fine lines, and age 
spots, and it also helps with wound healing, softens scar tissue, 
protects against UV rays, and reduces other signs of aging.[10] 
It has been reported that SOD has an important link in several 
human health problems including RBC-related disorders, 
cystic fibrosis (CF), postcholecystectomy pain syndrome, 
malignant breast disease, steroid-sensitive nephrotic syndrome, 

amyotrophic lateral sclerosis, neuronal apoptosis, AIDS, and 
cancer.[8,11-16] Furthermore, a strong association between the 
activity of SOD and Alzheimer’s disease has been suggested 
by some researchers.[8] It has also been reported that treatment 
with SOD helps recovery from mustard gas burns.[17] In many 
animal models having myocardial ischemia-reperfusion 
injury, inflammation, and cerebral ischemia-reperfusion 
injury, etc., SOD enzymes are found to be very effective.[18] 
SOD mimetics (small molecule catalytic antioxidants) offer a 
potential for treating diseases resulting from oxidative stress. 
SOD mimetics are synthetic compounds that mimic the native 
SOD by effectively converting O2

- into H2O2, which is further 
converted into water by catalase. They are of prime interest 
in therapeutic treatment of oxidative stress because of their 
smaller size, longer half-life, and similarity in function to the 
native enzyme. Several attempts have been made to use SOD 
as a therapeutic agent against the ROS-mediated diseases. The 
present review describes the various therapeutic potentials of 
SOD.

Therapeutic Potentials of SOD

SOD and cancer

SOD, being a key cellular antioxidant, is highly responsible 
for the elimination of O2

-. Many studies have revealed the 
critical role of oxidative stress in carcinogenesis.[19,20] Indeed, 
there are several clear evidences indicating that ROS work 
as endogenous class of carcinogens by inducing mutations 
in the cells.[21-23] Diminished activity of Cu, Zn-SOD, and 
Mn-SOD has been reported in cancer cells.[24,25] Normalization 
of SOD level contributes to part of the cancer cell phenotype 
reversion.[24] It has been suggested that SOD may regulate 
cancer progression and, hence, can be used as a novel target 
for cancer treatment.[26-29] Furthermore, it has been shown that 
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Cu, Zn-SOD can be used as a novel therapeutic target for the 
treatment of multiple myeloma.[30] On the contrary, the invasive 
and migratory activity of pancreatic cancer is promoted by 
SOD through activation of the H2O2/ERK/NF-κB axis.[31]

SOD liposome/mimetics have experimentally shown promising 
results in cancer prevention animal models.[32] They have also 
been shown to be safe during the early phase of clinical trials. 
Dietary supplement-based SOD cancer prevention provides 
another opportunity for antioxidant-based cancer prevention.[32] 
SOD mimetics have been shown to be beneficial in treating 
the currently incurable castration-resistant prostate cancer, 
in which SOD-2 expression is highly suppressed.[33] It has 
recently been shown that a potent SOD mimetic, MnTnBuOE-
2-PyP(5+), enhances carbenoxolone-mediated TRAIL-induced 
apoptosis in the most malignant tumor of the brain.[34]

SOD and inflammatory diseases

Neutrophils play a central and essential role in the pathogenesis 
of inflammation. Activated neutrophils adhere to vascular 
endothelium and transmigrate to the extravascular space, release 
ROS, protease enzymes, and large amounts of chemokines.[2] 
ROS and proteases damage normal tissue and extracellular matrix 
proteins. O2

- serves to activate endothelial cells and enhance 
neutrophil infiltration.[35,36] Studies performed in transgenic 
mice overexpressing extracellular SOD[37] and SOD mimetic[36] 
have shown that inhibition of O2

- can prevent the infiltration of 
neutrophils at the site of damage. Neutrophil apoptosis may 
also be an important step in the resolution of inflammation. In 
individuals with Down syndrome, neutrophil apoptosis increases 
and Cu, Zn-SOD is overexpressed.[38] Exogenous H2O2 together 
with SOD, increase the number of apoptotic neutrophils.[39]

SOD may serve as an inhibitory agent of neutrophil-mediated 
inflammation and may stand for a novel therapeutic approach for 
the ROS-dependent tissue damage induced by neutrophils through 

several mechanisms.[2] Preclinical studies with bovine Cu, Zn-SOD 
showed encouraging results for its use as a human therapeutic agent 
in acute and chronic inflammatory conditions, including dermatosis 
due to burn and wound injury.[40,41] Extracellular SOD, Mn-SOD 
and Cu, Zn-SOD have been described as potential inhibitor of 
inflammation by various reporters.[42-44]

SOD and CF

CF is characterized by the chronic inflammation and the 
recruitment of activated neutrophils.[45] In the plasma of patients 
with CF, SOD activity was significantly lower as compared 
with the healthy individuals.[46] Furthermore, in mononuclear, 
polymorphonuclear, and red cells of CF patients, reduced Cu, 
Zn-SOD activity was observed.[47] It has been found that the 
antifibrotic action of Cu, Zn-SOD is mediated by TGF-β1 
repression followed by phenotypic reversion of myofibroblasts.[48] 
Radiation-induced fibrosis of breast was significantly reduced 
by Cu, Zn-SOD.[49] Proapoptotic agents induced apoptosis 
in CF but not in control cells that were reduced by treatment 
with SOD mimetic.[50] These findings indicate new therapeutic 
possibilities targeting antioxidant pathways including SOD, so 
that oxidative stress and apoptosis can be reduced in CF cells, 
and proinflammatory response can be limited.

SOD and ischemia

ROS including O2
- and its reaction product peroxynitrite has 

a significant role in endothelial and tissue injury associated 
with ischemia and reperfusion. Overexpression of Cu, Zn-
SOD reduces ischemic damage resulting from ischemia/
reperfusion.[51] Mn-SOD targeted deletion deteriorates the 
outcome from both temporary and permanent middle cerebral 
artery occlusions.[52,53] The removal of O2

- and peroxynitrite 
by SOD mimetic helps in the prevention of cellular energetic 
failure and tissue damage related with ischemia and perfusion 
and has a beneficial effect in this situation.[54]

SOD and aging

SOD is considered to be an anti-aging enzyme. The free 
radical theory of aging was proposed by Derham Harman.[55] 
It postulated that oxygen free radicals generated in metabolic 
pathways result in age-related deterioration through oxidative 
damage to biomolecules, with mitochondria being the 
main target of attack. Accumulation of oxidative damage is 
considered to be one of the key mechanisms of aging.[55-57] 
Drosophila flies having 75% reduction in SOD activity, 
showed accelerated loss of olfactory behavior on ageing.[58] It 
has been suggested that novel SOD mimetics may be useful 
in attenuating aging-induced cognitive impairments and other 
aspects of physiological decline with aging.[59]

SOD and rheumatoid arthritis

Rheumatoid arthritis is a systemic disease and is characterized 
by a chronic inflammation reaction in the synovium of 

Figure 1: (a) The generally accepted catalytic mechanism for 
dismutation of O2

- by superoxide dismutase (SOD). (b) Subunit 
structure of bovine Cu, Zn-SOD (Protein Data Bank Entry, 2 SOD)

b
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joints, leading to degeneration of cartilage and erosion of 
juxta-articular bone. Increased oxidative stress or deficient 
antioxidant status is critical in the pathogenesis of rheumatoid 
arthritis.[60,61] Some antioxidants including SOD and 
Vitamin E have an anti-inflammatory role in experimentally 
induced arthritis.[61] It was found that SOD activity is low 
in patients suffering from rheumatoid arthritis and the 
administration of SOD through liposomes had a positive effect 
in the treatment of experimental arthritis.[62,63]

SOD and neurodegenerative diseases
Oxidative stress has been shown to be involved in the 
pathophysiology of several neurodegenerative diseases. The 
affected regions of patients having Alzheimer’s disease (AD) 
have reduced activity of antioxidant enzymes such as SOD, 
catalase, and glutathione peroxidase.[64,65] Familial amyotrophic 
lateral sclerosis (FALS) is a fatal neurodegenerative disease 
that leads to the selective loss of motor neurons. Several 
mutations in Cu, Zn-SOD gene are found to be associated 
with FALS.[66] In addition, Cu, Zn-SOD is one of the prime 
victims of oxidative damage to the brain in AD and Parkinson’s 
disease.[67] It has been experimentally demonstrated that 
overexpression of SOD-2 reduces hippocampal superoxide and 
hence prevents memory deficits in a mouse model of AD.[68] 
SOD supplementation showed improvement in mice model of 
AD.[69] SOD/catalase mimetic EUK-207 exhibited protection 
against and interruption of progression of amyloid and tau 
pathology and cognitive decline in a mouse model of AD.[70]

SOD and diabetes
Increased oxidative stress plays a major role in the etiology 
of diabetes and its complications.[71-73] In diabetes, persistent 
hyperglycemia stimulates the production of ROS from 
various sources.[74] As a result, diabetes usually leads to 
increased formation of ROS and weakened antioxidant 
defenses.[75,76] SOD catalyzes the conversion of O2

- into H2O2. 
Under hyperglycemic conditions, endothelial cells produce 
elevated levels of O2

-.[77] Overproduction of O2
- can inhibit 

glyceraldehyde-3-phosphate dehydrogenase which is an 
important enzyme of the glycolytic pathway.[78] This leads to 
the accumulation of glucose and other intermediate metabolites 
of this pathway and shifts to other alternative pathways of 
glucose metabolism along with increased production of 
advanced glycation end products.

Treatment with SOD has experimentally been shown to 
reduce liver oxidative stress in diabetic animals.[79] SOD 
mimetic (Mn[II][pyane] Cl2) has successfully been used 
to treat diabetes in diabetic rats.[80] Chemically modified 
SOD (carboxymethylcellulose-SOD and poly methyl vinyl 
ether-co-maleic anhydride-SOD) was effective in treating 
diabetes and offers a therapeutic advantage in clinical use.[81] 
It has been demonstrated that extracellular SOD can act as 
a therapeutic agent to protect the progression of diabetic 
nephropathy.[82]

Current limitations of SODs for therapeutic 
applications
Due to the instability, high immunogenicity, low cellular 
uptake, and lesser circulation in vivo half-life of SOD, 
their clinical applications as therapeutic agents are very 
limited. For this reason, a wide variety of SOD conjugates 
have been developed with longer circulation half-lives, 
high stability, and lesser immunogenicity.[81,83,84] These 
SOD conjugates have exhibited marked effects in vivo. The 
administration of SOD in free form has some disadvantages, 
most importantly, the low accumulation of SOD in inflamed 
areas due to its reduced half-life in the bloodstream and 
its rapid renal excretion. To overcome this, SOD can be 
incorporated either in highly loaded conventional liposomes 
or long-circulating liposomes (PEG-liposomes).[85] Many 
SOD mimetics have been synthesized that can be used 
as pharmaceutical agents in a large number of diseases 
in which the native SOD is ineffective.[80,86] Potent SOD 
mimetics such as metalloporphyrins, Mn cyclic polyamines, 
Mn-salen derivatives, and nitroxides have been developed 
for treating various diseases resulting from increased 
oxidative stress.[87]

Future perspectives
Diets high in vegetables and fruits, which are good sources 
of antioxidants, have been found to be healthy. Traditional 
antioxidants such as selenium, carotenoids, and Vitamins 
E and C are safer products. However, research has not 
shown these antioxidant supplements to be beneficial in 
preventing diseases.[88,89] The reasons may be: The effects 
of the large doses of antioxidants used in supplementation 
studies may be different from those of the smaller amounts 
of antioxidants consumed in foods. Differences in the 
chemical composition of antioxidants in foods versus those in 
supplements may influence their effects. For some diseases, 
specific antioxidants might be more effective than the ones 
that have been tested.

Current research reveals the potential therapeutic applications 
of SOD in the prevention/control of various diseases. Future 
approaches in this field are expected to include gene therapy 
to produce more antioxidants in the body, increasing the level 
of antioxidants in plant products by genetic modifications, 
synthetic antioxidant enzymes (SOD mimetics). Among the 
most critical antioxidants that ameliorate the effects of oxidative 
stress within cells are enzymes such as the SODs. Due to their 
importance, the SODs have received much attention in efforts 
to minimize oxygen radical-induced damage to normal tissues. 
Since the administration of exogenous SODs themselves 
has often proven to be problematic, a variety of innovative 
approaches are currently being explored in conjunction with 
radiotherapy. Among these are SOD mimetics, the future holds 
great promise for the development of superior products that 
will serve to ameliorate the damaging effects of radiation on 
normal cells and tissues.
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Conclusion

SOD can be used as a pharmaceutical in treating various 
diseases resulting from oxidative stress [Table 1]. SOD 
conjugates and mimetics have improved performance 
and overcome some of the limitations of the free enzyme. 
Antioxidant-based mimetics may potentially be the future of 
oxidative stress targeted therapies in chemoprevention. It is 
important that future research on the potential use of SOD or 
its conjugates and mimetics in the treatment of oxidative stress-
related diseases should focus on patient-oriented outcomes.
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