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Heart rate variability indices, biomarkers, and cardiac 
nerve density: Independent surrogate markers for 
diagnosis of diabetic cardiac autonomic neuropathy in 
type 2 diabetes mellitus animal model

Introduction

Cardiovascular diseases are the primary cause of morbidity and 
mortality among patients with diabetes mellitus (DM).[1] Diabetic 
cardiac autonomic neuropathy (DCAN) is the impairment of 
autonomic control of the cardiovascular system in patients 
with diabetes after exclusion of other causes.[2,3] It is a major 
complication of diabetes yet the pathogenesis is not fully 
understood. Once DCAN patients become symptomatic, no 
form of management options has been shown to effectively 
reverse the progression; therefore, prevention and early 
diagnosis are key factors in the management.[4] There has been 
increasing recognition of the significant relationship between 
the autonomic nervous system with cardiovascular morbidity 
and mortality especially in DM patients. Experimental evidence 
for an association between the propensity for arrhythmogenesis 

and signs of either increased sympathetic or reduced vagal 
activity has spurred efforts for the development of quantitative 
markers of autonomic activity.[5-8] Heart rate variability (HRV) 
has been shown to represent one of the most promising of such 
markers.[9-11] Other methods that have been proposed for the 
diagnosis of DCAN include: The assessment of symptoms and 
signs, cardiovascular autonomic reflex test, and ambulatory 
blood pressure monitoring. HRV is largely used in clinical and 
for research purpose. Studies have shown that diabetic patients 
and animal models have reduced cardiac nerve density with 
the development of DCAN.[7,8,12-14] However, the relationship 
between the HRV, laboratory parameters of DCAN, cardiac 
histology, and cardiac nerve density has not been fully elucidated. 
This study therefore aims to correlate HRV indices, cardiac 
histology, and nerve density with selected biochemical markers 
in DCAN rat model using streptozotocin (STZ) induction.
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Materials and Methods

Animals
The experimental protocol was approved and the research 
was conducted in accordance with the guiding principles of 
the University of Ilorin Ethical Review Committee (UERC) 
with approval number: UERC/ASN/2019/1912. Forty-two 
male Wistar rats were used for the experiment. The animals 
were acclimatized to their environment for 2 weeks before 
commencement of the experiments while been fed ad libitum 
and housed in pairs in wooden cages.

Experimental groups/model development
The male Wistar rats were divided into two major groups, 
normal group (n = 10) and diabetic group calculated using 
prevalence of DCAN from previous studies.[15] Type 2 DM 
was induced with initial 8 weeks high-fat diet (HFD) intake, 
thereafter, low dose STZ at 25 mg/kg dose intra-peritoneally 
administered under ketamine anesthesia over 5 days. Ten days 
after STZ-injection, rats with plasma glucose >16 mmol/L were 
selected into the DCAN subgroup. Whole blood was taken 
from the proximal ventral tail vein for glucose measurement 
using a glucometer (Accu-Chek II Boehringer Mannheim 
Canada, Dorval, Quebec). Fasting morning plasma glucose 
levels, water consumption, and body weights were determined 
at weekly intervals while other parameters were determined 
at the beginning and end of the experiment. The effects 
of DCAN on all the subgroups of the model were studied. 
These entail both non-invasive and invasive assessment of 
autonomic neuropathy. Time-varying, nonlinear, and non-
invasive methods were used to assess cardiac autonomic 
dysregulation from electrocardiography (ECG) records using 
Holter ECG. Blood samples were collected to measure serum 
biomarkers, before and after DM induction; moreover, T2DM 
was also confirmed with plasma insulin, c-peptide, and insulin 
resistance (IR) using homeostasis model assessment for IR 
(HOMA-IR = Fasting glucose (mmol/l) * fasting insulin 
(μIU/l)/22.5)[16] and histology of the pancreas.

ECG and measurement of time and frequency 
domain parameters
The ECG signals were continuously recorded for at least 
15 min in the limb, augmented, and chest leads following 
subcutaneous administration of ketamine (75 mg/kg).[16] These 
recordings were stored and thereafter analyzed. Lead II was 
achieved in the Wistar rat by the placement of the negative 
electrode near the right shoulder and the positive electrode to 
the left of the xiphoid space, in the same way as the Einthoven 
triangle (right arm position in the negative electrode and left leg 
position in the positive electrode).[17,18] Frequency domain (low 
frequency [LF], high frequency [HF], and LF:HF) and time-
domain parameters including mean HR, standard deviation of 
normal-to-normal R-R intervals (SDNN), root mean square 
of successive differences in normal-to-normal R-R intervals 

(RMSSD), and percentage of successive normal sinus RR 
intervals >50 ms (PNN50) were calculated from the HRV data.

Invasive assay

At the end of the experiment, the rats were humanely 
euthanized using cervical dislocation after been anaesthetized; 
blood samples were collected via cardiac puncture after the 
opening of the upper abdominal region. The blood samples 
were centrifuged at 1500× g 15 min and the plasma samples 
micro-pipetted into plain bottles and immediately stored at a 
temperature of 0–4°C.

For the invasive assay, protein expression markers, which 
have been correlated with DCAN and diabetes complications 
in previous studies and also recommended by the DCAN 
subcommittee of the Toronto autonomic neuropathy working 
group, were assayed.[19-23] These include nor-adrenalin, nerve 
growth factor (NGF), and choactase.

Histological studies

Paraffin sections from epicardial region of the heart (3 μm 
thickness) were cut; thereafter, cardiac nerve density was 
evaluated using standard staining protocol for H&E and 
histochemistry.[24] Morphometric analysis was, thereafter, 
done after histochemistry to quantify and evaluate the nerve 
density.

Statistical analysis

Data were analyzed using Statistical Products and service 
solutions (SPSS) software (Version 23.0; SPSS Inc., IL., 
USA) for windows. Results were expressed as the mean ± 
SEM. Comparisons among groups were done using one-way 
ANOVA. Group means for two independent samples were 
compared using Student’s t-test. Correlation and regression 
analysis were also done step-wisely to identify variables 
that could predict the nerve density estimates as an outcome. 
P < 0.05 was taken as statistically significant.

Results

Diabetes induction and laboratory parameters

Eighty-nine percent of the DCAN group had significantly 
higher blood sugar levels following diabetic induction. The 
plasma levels of insulin and c-peptide were significantly 
lower compared with the control. Total cholesterol was also 
seen to be significantly higher in the DCAN group compared 
with the control. In addition, HOMA, which is a method for 
assessing β-cell function and IR from basal (fasting) glucose 
and insulin or C-peptide concentrations, was also significantly 
higher in the DCAN group compared with control [Table 1]. 
Advanced glycated end product (AGEs) was significantly 
higher in the DCAN group compared with the control. In 
addition, biomarkers of anti-oxidants which included total 
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cellularity [Figure 1a and b]. Bielschowsky histochemical 
stain of the control group shows normal cardiac tissue, 
with axons innervating the intercalated disks staining 
black. Cardiac connective tissue in staining various shades 
of gray; nuclei seen as round to oval-shaped cells staining 
gray to black. The DCAN group shows a varying degree of 
axonal dystrophy characterized by; excessive vascular tissue 
reaction, disorganization of the cardiac tissue, inflammatory 
cells, clumping together of nerve fibers, and thickening 
of the nerves and axons supplying the intercalated disks 
[Figure 1c and d].

Nerve density estimates and correlation with 
HRV and laboratory parameters
Morphometric nerve estimates showed significantly lower 
nerve density in the DCAN group compared to the control 
group, as shown in Figure 2. It was also observed that there was 
a significant correlation between the nerve density and both 
laboratory and HRV parameters [Table 3]. Positive correlation 
was found with sorbitol dehydrogenase (P = 0.048), NGF 
(P = 0.018), glutathione (P = 0.025), and choactase (P = 0.048). 
However, there was significant negative correlation with AGE 
(P = 0.026) and noradrenaline (P = 0.049). The time spectral-
domain showed significant positive correlate with nerve 
density, unlike the frequency domain that did not correlate 
significantly with nerve density.

Discussion

The study shows the induction of T2DM in a rat model using 
STZ in combination with HFD. High-fat feeding has been 
proposed to cause obesity, hyperinsulinemia, and altered 
glucose homeostasis due to insufficient compensation by 
the beta cells of the pancreatic islets.[25] The development 
of significantly lower insulin with higher total cholesterol 
and HOMA confirms the establishment of T2DM model. 

Table 1: Comparison of the laboratory parameters of DCAN and 
control group
Parameters Baseline/

control
DCAN 

induction
P value

UREA (mg/dl) 10.90±4.73 15.71±3.59 0.698

TC (mg/dl) 66.61±2.52 69.28±2.71 0.001*

TG (mg/dl) 66.07±1.46 94.02±1.59 0.121

AGEs (ng/ml) 32.04±2.32 91.61±7.26 <0.0001*

C-PEPTIDE (ng/ml) 1.20±0.21 0.73±0.19 0.001*

INSULIN (µIU/mL) 2.89±0.26 1.14±0.19 <0.0001*

HOMA-IR 0.13±0.08 0.25±0.09 0.016*

NGF (pg/ml) 284.16 
(91.18–381.34)

110.56 
(89.27–169.58)

<0.0001*

Noradrenaline (pg/ml) 111.56±45.09 889.76±171.27 0.010*

GSH (mM) 0.35±0.09 0.25±0.04 0.001*

SD (U/L) 42.50±3.71 31.07±2.53 0.009*

TAC (mM) 1.44±0.25 0.44±0.08 <0.0001*

Choactase (ng/ml) 1.19±0.04 0.69±0.03 0.031*
TC: Total cholesterol, TG: Triglyceride, AGEs: Advanced glycation end product,  
HOMA-IR: Homeostatic model assessment for insulin resistance, NGF: Nerve growth factor, 
GSH: Glutathione, SD: Sorbitol dehydrogenase, TAC: Total antioxidant capacity, Choactase: 
Acetylcholine transferase. *P<0.05 compared with normal control

Table 2: Mean heart rate variability parameters among the groups
HRV indices Control 

group
DCAN 
group

P value

Minimum RR interval 305.0±25 420.0±36 0.001

Maximum RR interval 875.0±102 1720.0±201 <0.0001*

Average RR interval# 514.5±56 954.3±78 <0.0001*

Low frequency (LF)# 789.1±73 1052.4±96 <0.0001*

High frequency (HF) 12033.2±203 5743.3±189 <0.0001*

LF/HF# 0.067 0.187 0.0001*

HRV index (ms*ms) 100.8±7.1 47.5±5.3 <0.0001*

PNN50(ms*ms) 81.6±8.3 62.8±6.4 <0.0001*

SDNN (ms*ms) 334.2±13.5 118.3±10.3 <0.0001*

RMSSD (ms*ms) 442.2±35.2 172.6±24.9 <0.0001*

Triangular index (ms*ms) 224.5±15.6 47.5±5.2 <0.0001*
LF: Low frequency, HF: High frequency, HRV: Heart rate variability, pNN50: Percentage of 
successive RR intervals that differ by more than 50 ms. SDNN: Mean of the standard deviations of all 
the NN intervals for each 5 min segment of a 24 h HRV recording. RMSSD: Root mean of squared 
successive differences. *P<0.05 compared with normal control, #(means higher value is worse)

antioxidant capacity and glutathione were significantly lower 
in the DCAN group compared to the control group. The 
study also showed that markers of NGF and parasympathetic 
expression (Choactase) were significantly lower in the 
DCAN group, while on the other hand nor-adrenaline was 
significantly higher in the DCAN group relative to control 
[Table 1].

Effect of DCAN on HRV indices
The evaluation of autonomic function using indices of HR 
variability (frequency and time domain spectral) showed a 
similar pattern with the laboratory markers. DCAN induction 
was observed to reduce time-domain parameters, which may 
reflect the progressive destruction of the parasympathetic 
nerve endings. PNN50, HRV index, triangular index, 
and RMSSD were significantly reduced compared to the 
control group. SDNN which has been shown to correlate 
with sympathetic outflow was, however, also seen to be 
significantly lower than the control group [Table 2]. The 
HF was significantly lower in the DCAN group while the 
LF and LF:HF were both higher after DCAN induction, as 
shown in Table 2.

Cardiac histology
Histological sections of the atrial/SA region of the heart 
using H&E stain showed a normal arrangement of cardiac 
muscle fibers with deeply staining basophilic nuclei in the 
control group. The DCAN group, however, showed varying 
pattern ranging from swelling of cardiac tissue and increased 
cellularity, graded to complete loss of normal cardiac 
morphology to outright disorganization of cardiac muscle 
architecture with degenerating myocyte nuclei and increased 
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cellular structure and architecture and (ii) interaction of AGEs 
with its receptors on cell surfaces, altering the signaling 
cascades and cellular function.[14,27]

Noradrenaline was significantly higher in the DCAN group 
compared with the normoglycemic control. This may 
indicate over stimulation of the sympathetic nerves since 
noradrenaline has been proposed as a surrogate of muscle 
sympathetic activity and one of the recommended test by the 
Toronto Consensus committee on the diagnosis of DCAN.[28-33] 
Choline acetyltransferase (choactase), a protein marker of 
parasympathetic nerves, had been shown to correlate with 
autonomic nerve densities. Yang et al. found a decreased 
concentration of choactase in Akita diabetic rat model similar 
to what was observed in this study. He further showed that 
the reduced choactase correlated with lower western blot 
choactase antibodies and autonomic nerve rarefaction.[34] 
The above findings may support the fact that while there is 
the destruction of both autonomic nerves, there seems to be 
an early reduction in parasympathetic activity, unlike the 
sympathetic system that is overexpressed. This may explain 
the resting tachycardia seen in diabetic patients with cardiac 
autonomic neuropathy.

This study confirms the premises that STZ-diabetic rats 
showed changes in HRV indices early in the course of 
diabetes, although autonomic functions evaluated by time-
domain indices of HR variability were more pronounced about 
28 days after STZ injection. Interestingly, all of these changes 
showed a negative correlation with plasma glucose and AGEs 
while positively correlated with sorbitol dehydrogenase and 
antioxidant markers.

Figure 2: Morphometric estimates of the nerve densities of the 
control and DCAN group. Nerve estimate was done at the start of the 
experiment (week 0), after HFD (week 8), during induction of diabetes 
(week 10) and 4 weeks after diabetes induction (week 12). *P<0.05 
significantly lower compared with control. Control: Normoglycemic 
control (+10 ml/kg normal saline), DCAN 2: type 2 DM group 
(+10 ml/kg normal saline)

Table 3: Correlation of morphometric nerve densities with 
laboratory parameters and heart rate variability indices
Parameters r* P value

TG −406 0.133

AGEs −0.571 0.026*

SD 0.469 0.048*

NGF 0.363 0.018*

NA −191 0.049*

CHOACTASE 0.203 0.048*

GSH 0.575 0.025*

SDNN 0.351 0.019*

RMSSD 0.231 0.048*

PNN50 0.235 0.039*

HRV INDEX 0.311 0.259

LF −0.236 0.398

HF −0.343 0.211
TG: Triglyceride, AGEs: Advanced glycation end product, SD: Sorbitol dehydrogenase, NGF: 
Nerve growth factor, NA: Nor-adrenaline, Choactase: Acetylcholine transferase,  
GSH: Glutathione, SDNN index (SDNNI): Mean of the standard deviations of all the NN 
intervals for each 5 min segment of a 24 h HRV recording. RMSSD: Root mean of squared 
successive differences, pNN50: Percentage of successive RR intervals that differ by more than  
50 ms. LF: Low frequency, HF: High frequency. *P<0.05 compared with normal control

The current study showed significantly increased AGEs after 
DM induction in the rats. Previous studies have shown that 
accumulations of AGEs are associated with neuronal fiber 
loss in the human diabetic peripheral nerve. AGEs interfere 
with axonal transport, thus contributing to the development 
of atrophy and degeneration of nerve fibers.[14,26,27] AGEs 
contribute to diabetic complications through (i) formation of 
cross-links between key molecules in the basement membrane 
of the extra-cellular matrix (ECM), permanently altering 

Figure 1: (a and b) Photomicrographs representative of hematoxylin 
and eosin-stained slides of the atrial/SA region of the heart in the 
DCAN 2 rat model. (a) Control groups showing normal cardiac muscle 
fibers and basophilic nuclei, (b) DCAN group shows a waxy pattern, 
increased cellularity, swelling with disorganized muscle architecture. 
Red arrows=Edema, Black arrow=Nuclei. (c and d) Photomicrographs 
representative of Bielschowsky histochemical silver-stained slides of 
the atrial/SA region of the heart of the DCAN 2 rat model. (c) Control 
groups showing normal cardiac muscle fibers and basophilic nuclei, 
(d) shows swelling with disorganized muscle architecture and 
degenerating myocyte nuclei (axonal dystrophy). Red arrows=Edema, 
Yellow arrow=Axonal dystrophy, Black arrow=Nerve sheath

a

c d

b
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Earlier studies have suggested that DCAN has both 
parasympathetic and sympathetic dysfunction with early 
defective parasympathetic control, represented by persistent 
resting tachycardia and loss of beat-to-beat variation 
during deep respiration.[29,35-37] Similar to what Faran et al. 
documented, this study observed early changes in the PNN50 
in the DCAN model while SDNN showed significant changes 
28 days after DCAN induction.[35] SDNN had been shown to 
provide an estimate of overall HR variability and sympathetic 
balance while PNN 50 correlates with overall parasympathetic 
events. The findings that parasympathetic dysfunction occurs 
early in DCAN may be due to the fact that it takes a longer time 
for the sympathetic dysfunction to manifest in abnormality of 
HR variability. Since blood parameters showed a significant 
increase in nor-adrenaline levels early after DCAN induction, it 
may then indicate that HR variability indices lag behind plasma 
markers of sympathetic dysfunction. SDNN has important 
correlates with sympathetic function and in fact has been 
proposed as a prognostic marker for myocardial infarction 
and sudden death.[37-43] Studies have also shown significant 
derangement in PNN50 in heart failure subjects with autonomic 
dysfunction.[44-46]

Structural changes occurring in peripheral nerves may typify 
that of human diabetic neuropathy and usually preceded by 
hyperglycemia-induced biochemical abnormalities. Non-
enzymatic glycosylation of myelin components, reduction 
of endoneurial blood flow, increased oxygen free radical 
activity, or production and deprivation of the NGF have been 
implicated in the process of axonal dystrophy.[47] The present 
study confirmed the afore-mentioned showing impaired 
antioxidants activity and reduced NGF, which correlates with 
the HR variability spectral events shown.

The finding of disorganized cardiac muscular architecture 
and swelling in the study may be a pointer to the early 
development of diabetic cardiomyopathy. This may lead to 
diastolic dysfunction and a high incidence of heart failure 
in patients with diabetes. Previous studies have shown that 
AGEs can affect the physiological properties of proteins in 
the ECM by inducing the formation of cross-links, thereby 
causing intracellular changes in vascular and myocardial 
tissue.[48]

The results of the current study corroborate the fact that 
cardiac autonomic neuropathy and axonal dystrophy seems 
to be closely associated with biochemical derangements 
in STZ-diabetic rat model, such as increased AGEs, 
glucose, and norepinephrine, with reduced SD activity, 
choactase, anti-oxidants, and NGF, which all correlate with 
HR autonomic indices derangements. In agreement with 
some early data reported by researchers who showed that 
autonomic nerve structural lesions do not appear as early 
as these functional changes. The functional changes seen 
could be attributed to the early development of autonomic 
neuropathy in this model, which if treated early, may 

prevent permanent structural neurological dysfunction. The 
correlation observed between cardiovascular HR variability 
dysfunction and plasma biomarkers are in accordance with 
these observations.

Conclusion

At the moment, management options have been geared toward 
prevention of DCAN; however, once developed no treatment 
has been proven to reverse the DCAN features, thus the need 
for early routine checks for diabetic patients. The correlation 
of cardiac nerve densities with HRV indices and biomarkers 
in this study further strengthens the assertion that routine ECG 
Holter will be very useful and indeed recommended for patients 
with DM for early detection and follow-up of neuropathy 
before interventions may be impossible.
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