
6International Journal of Health Sciences
Vol. 18, Issue 3 (May - June 2024)

Identification of potential biomarkers for bone metastasis 
using human cancer metastasis database

Introduction

Prostate cancer (PCa) in males is the second most common 
type of cancer; one in 25 individuals worldwide may be 
diagnosed with it at some point in their lives, making it one of 
the leading causes of cancer-related deaths globally.[1,2] Since 
2020, there have been an increased number of occurrences 
of PCa, one of the most common malignant tumors in 
men, with 248,530 cases reported and 34,130 fatalities.[3] 
Approximately 350,000 patients lose their lives to PCa each 
year, according to documentation. Due to the absence of 
early-stage clinical signs in PCa, the number of mortalities is 
extremely high.[4] Age, race, genetics, family history, obesity, 
and smoking are some of the most common risk factors for 
prostate tumor development.[5,6] Castration-resistant PCa, a 
problem in the clinical course, develops if the therapy for 
PCa is found unsuccessful. The disease thus puts a heavy 
economic burden on society and healthcare organizations.[7,8] 
The majority of patients with advanced PCa are also reported 
to have multiple metastases, which typically adversely affect 
the lymph nodes adjacent to the prostate but can also actually 

affect multiple organs and organ systems like the axial bones 
(84% of malignancies had these), distant lymph nodes (11%), 
liver (10%), respiratory system (7%), and brain (3%).[9] Once 
bone metastasis develops, it is reported that the patient’s 
chances of recovering are depleted. Pain, pathological 
fractures, and paraplegia are just a few of the complications 
that can result from PCa, which results in bone metastases, all 
of which significantly lower the patient’s quality of life. The 
prognosis seems to be a typical problem if bone metastasis 
occurs, and the survival rate is also dramatically reduced.[10,11] 
According to Paget’s “seed and soil” hypothesis, which was 
first put forth in 1889, the bone microenvironment offers 
a particularly favorable environment for the growth and 
intense development of tumor cells, which may contribute, at 
least in part, to PCa’s propensity to metastasize primarily to 
the bone.[12] Even with improvements in pharmacotherapeutic 
methods, bone metastases still have a negative impact on 
patient survival, necessitating earlier identification of “high-
risk” individuals (PSA > 20). Because bone metastases have 
an impact on physiological bone turnover, the assessment 
of bone turnover markers has therefore been intensively 
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studied for diagnostic and predictive purposes, as well as 
to support the development of anti-cancer medications. In 
addition, a thorough investigation of the potential predictive 
importance of bone metastasis biomarkers is presently 
underway.[13]

To investigate the role of different genes for bone metastases 
from PCa and to discover new biomarkers of bone metastases, 
analysis of the microarray data series GSE26964,[14] which 
was retrieved from the NCBI Gene Expression Omnibus 
(GEO),[15] was carried out. The information for this study 
was gathered from samples of PCa that had spread to the 
bones. The process started with identifying the differentially 
expressed genes (DEGs) between primary tumors, that 
is, PCa and metastasized tumors, that is, metastasized to 
bone. Then, these genes were used to construct a protein-
protein interaction (PPI) network after the identification of 
target genes. Various centrality parameters were calculated, 
betweenness centrality being the major parameter for this 
study, which was further used to identify hub genes. These 
hub genes were used as input for the characterization of 
function and analysis of pathways. Furthermore, the reported 
genes’ functionality was validated by experimental evidence 
in the existing literature.

Methods

Various steps used for the pathway analysis and identification 
of key targets using information theory, mutual information 
(MI), and graph theory in conjunction with miRNA data are 
represented in Figure 1.

Data retrieval

Using the search term “Bone metastasis from PCa” and 
filters unique to an organism, that is, Homo sapiens, the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/)[16] was 
searched to discover the gene expression profiles. The dataset 
GSE26964 was acquired using the Capitalbio mammal 
microRNA V3.0 platform.[17] Six primary and seven bone 
metastatic PCa samples from the collection were examined 
for their miRNA expression profiles using miRNA microarray 
analysis. In the retrieved dataset, total RNA was isolated 
from the tissues, followed by the isolation and labeling of 
low-molecular-weight RNA and the hybridization of 924 
microRNAs with the Capitalbio V3.0 biochip. Dataset 
GSE26964 was retrieved from GEO, and Table 1 lists the 
parameters.

Differential expression analysis

The Human Cancer Metastasis Database (HCMDB)[18] and 
the limma package of R[19] were employed to analyze the 
DEGs, and numerous plots, including the volcano plot, 
box plot, density plot, and MD plot, were constructed to 
visualize DEGS and view distribution values. Five hundred 
and thirty-one genes that were up- and down-regulated by 
miRNAs have been discovered. The top-down- and up-
regulated genes were selected from a total of genes. All 
the data about cancer and metastasis are kept in a database 
called HCMDB. The top-regulated and down-regulated 
genes were explicitly chosen and used for additional 
analysis in the study.

Target gene identification

The miRTarBase[20] technique was employed to identify the 
target genes. It is a free tool that uses miRNA to identify 
target genes. Further selections included the best validation 
technique for gene display. A few of the methods used for 
the validation procedure included the reporter assay,[21] 
western blot,[22] and qPCR.[23] The genes were also validated 
for the number and quality of citations. It was proposed to 
select the genes with the most string validations and the 
best citations.

Figure 1: Flowchart depicting the various steps included in 
methodology

Table 1: Parameters of the gene expression data for primary 
prostate cancer and bone metastases that were obtained from the 
GEO database
S. No. Parameter Explanation

1 GEO accession number GSE26964

2 Data size 2.1 Mb

3 Sample 6: Primary prostate cancer
7: Bone metastatic prostate cancer

4 Data type miRNA microarray

5 Country China
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Functional enrichment analysis

The Search Tool for the Retrieval of Interacting Genes and 
Proteins (STRING)[24] database was utilized to carry out the 
functional enrichment analysis. STRING is the name of the 
database used to study protein-protein interaction networks 
(PPIN). It is an online resource and scientific database of 
predicted and known PPIs. Information obtained from many 
sources, such as experimental data, computer prediction 
techniques, and free text collections, is included in the 
STRING database. It is openly available and constantly 
updated. Using a number of functional classification methods, 
such as GO,[25] Pfam,[26] and KEGG,[27] the database also serves 
to highlight functional enrichments in user-provided lists of 
proteins. More than 24.5 million proteins from more than 
5000 different organisms are represented in the most recent 
version 11b. A group of academic institutions, including CPR, 
EMBL, KU, SIB, TUD, and UZH, collaborated to construct 
STRING.

A maximum of 76.92% of the 13 seed genes that displayed 
interaction did so over the course of the network’s sixth growth 
stage, indicating network expansion.

Network and molecular profile analysis

The network and molecular profile analyses were carried 
out using Cytoscape 3.9.1.[28] Open-source software called 
Cytoscape was used to combine, visualize, and explore 
biological networks. Ten of the 13 genes in the network showed 
associations. Three of the four clusters created by Clusterviz, 
which was utilized to create clusters from the network that 
was created, contained seed genes. The cluster analysis and 
visualization were carried out using the k-means clustering 
algorithm, which was used by ClusterViz.[29] Three widely 
used clustering algorithms-FAG-EC, EAGLE, and MCODE 
were included in the most recent version of ClusterViz, 
which compared the outcomes of several methods to perform 
additional analysis.

Functional characterization and pathway 
analysis

A Cytoscape plug-in called Network Analyzer[30] was applied 
for the functional analysis of the genes chosen using the 
STRING and Cytoscape platforms. It is a flexible and easy-to-
use tool for network analysis, both of biological networks and 
other networks. This plugin works seamlessly with Cytoscape 
3.9.1 and utilizes effective graph algorithms to produce a 
full list of simple and complicated topological parameters. It 
adds node properties for the outcomes and provides helpful 
visualization settings to display and export the generated 
distributions. A few centrality measures, including degree, 
clustering coefficient, closeness, and betweenness centrality, 
were indicated.

Results

Identification of DEGs
To analyze DEGs, the dataset with series ID GSE26964 was 
uploaded into HCMDB. Based on fold change and P-value, 531 
DEGs were determined in total. The data from GEO were cross-
checked against HCMDB, which uses the limma package of R to 
analyze DEGs, and various plots were constructed using DEGs 
such as box plots, density plots, MD plots, and volcano plots using 
the R language [Figure 2].[31] The package of HCMDB is based 
on empirical Bayes values and also examined 531 miRNAs, of 
which 444 are downregulated and 86 are upregulated. A P-value 
cutoff of 0.05 and a fold change cutoff of 1 has been used.

Network construction
A PPIN[32,33] was developed to learn more about the connections 
between DEGs at the protein level [Figure 3]. Thirteen frequent, 
strongly related DEGs were used as seed genes to create an 
enlarged network up to the sixth growth using the STRING 
database [Figure 4]. Gene interaction was observed as of 
the sixth growth due to the maximum number of seed genes 
showing direct interactions. The enlarged PIPN has 53 nodes 
and 372 edges, which Cytoscape used to distinguish between 
the proposed seed genes (purple color nodes) and the additional 
genes added up to the sixth growth (gray color nodes) [Figure 5].

Network and molecular profile analysis
The network centrality of each node in the extended network 
(53 nodes) was estimated using ClusterViz, Cystoscope’s plugin, 
to find the hub genes.[33-35] Three of the four clusters created by 
ClusterViz, which was utilized to create clusters from the network, 
contained our seed genes [Figure 6]. Based on the centrality 
metrics, nodes were prioritized according to their ranking. 
Nodes with the highest degree were selected first, followed by 
other centrality parameters such as closeness, betweenness, and 
clustering coefficient. Based on the synthesis of all the centrality 
characteristics, hub genes were finally determined. The best 
centrality and network properties were displayed by the four genes 
ABCB1, KRAS, CDKN1A, and PLAU [Table 2].

Computation of topological parameters
A Cytoscape plug-in called Network Analyzer was used to 
compute several topological parameters.[36] Neighborhood 
connectivity, betweenness centrality, degree, topological 
coefficient, and closeness coefficient were the topological 
metrics considered [Figure 7]. In a scale-free network, the 
distribution of links to nodes follows a power law.[37] Power 
laws signify that while a small number of significant nodes 
(which we refer to as hubs) have a high number of connections, 
most nodes have extremely few connections. A power law 
with an exponent is frequently represented using the equation 
Y=MXB. X is the variable (what you can modify), Y is a 
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function (the outcome), B is the order of scaling (the exponent), 
and M is a constant (unchanging).[34]

Functional characterization and pathway 
analysis
Based on gene expression, taking into consideration the 
P-value and logFC, the expression profiles of the four genes 

Table 2: Centrality parameters of seed genes, showing best 
centrality parameters
Parameters/Genes ABCB1 KRAS PLAU CDKN1A

Betweenness centrality 0.044 0.054 0.012 0.012

Closeness centrality 0.527 0.690 0.533 0.620

Clustering coefficient 0.524 0.499 0.639 0.700

Degree 7 31 9 23

Eccentricity 3 3 3 3

Neighborhood 
connectivity

23.286 18.581 15.889 21.174

No. of undirected edges 7 31 9 23

Radiality 0.976 0.988 0.977 0.984

Stress 396 848 266 270

Target:: family Transporter Enzyme Enzyme Enzyme

Topological coefficient 0.503 0.413 0.345 0.471

mentioned were analyzed [Figure 8]. CCND1 (Cyclin D1) 
demonstrated unique interactions with a subset of four 
DEGs [Figure 9]. To confirm the findings that CCND1 is 
the most likely target protein for bone metastases from PCa, 
additional Google Scholar citations using two distinct search 
methods were reported [Table 3]. When pathway analysis 
was conducted, the gene that was prominent in the Hedgehog 
pathway was CCND1.

Figure 2: Plots prepared by using DEGs for prostate cancer and bone metastasis to view distribution of values and visualize DEGs (a) Box 
plot, (b) Density plot, (c) MD plot, and (d) Volcano plot

a

c d

b

Figure 3: First network of STRING representing interactions of 
seed genes
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Discussion

Using the GSE26964 dataset, we used a thorough bioinformatics 
approach in this study to uncover significant information 
on the molecular pathways generating bone metastases in 
PCa. We used information theory, MI, network analysis, and 
miRNA-target interactions in our investigation to pinpoint the 
key genes and pathways linked to this challenging disease. 
Identifying DEGs, which are significant in the development 
and onset of cancer, was the first step in our research. We 
identified DEGs related to bone metastases in PCa using the 
HCMDB. We utilized miRTarBase to identify target genes 
among the DEGs, shedding light on the intricate web of post-
transcriptional regulation. This step allowed us to uncover 
potential miRNA-mediated control over gene expression[38]. 
The construction of gene-gene interaction networks based 

on DEGs offered invaluable understanding into the intricate 
interactions within the context of PCa metastasis.[39] For the 
purpose of identifying genes of significance in the network, we 
used centrality attributes such as degree, clustering coefficient, 
closeness, and betweenness centrality. Notably, ABCB1, 
KRAS, CDKN1A, and PLAU were identified as key actors, 
indicating their potential importance in the bone metastasis 
of PCa.[40-43] The eventual identification of CCDN1 as an 
additional interaction with DEGs was one of our study’s notable 
results. This discovery emphasizes the significance of CCDN1 
in the context of PCa bone metastases, which is backed by 
Google Scholar citations and outcomes from numerous search 
techniques. Furthermore, based on the current findings, our 
results imply that CCDN1 may function as a significant target 
protein.[44] Our study showcases the utility of information theory 
and MI in the analysis of complex biological datasets. These 
techniques provided a robust framework for uncovering hidden 
relationships and dependencies within the data. The integration 
of information theory with network analysis and miRNA data 
allowed us to pinpoint critical targets and associated pathways. 

Figure 4: Network extension from first network to sixth growth using STRING database

Figure 5: Visualization of the network in Cytoscape (Purple color 
nodes: Seed genes, Grey color nodes: added genes till sixth growth)

Table 3: Google scholar citations and two different search 
methods representing CCND1 as best probable target protein 
through the findings
Gene name Searched hit Number of results

CCDN1 •CCDN1 AND bone metastasis
•CCDN1 AND bone metastasis 
AND prostate cancer

•13,300
•8,240

ABCB1 •ABCB1 AND bone metastasis
•ABCB1 AND bone metastasis AND 
prostate cancer

•8,760
•5,490

KRAS •KRAS AND bone metastasis
•KRAS AND bone metastasis AND 
prostate cancer

•52,200
•30,600

CDKN1A •CDKN1A AND bone metastasis
•CDKN1A AND bone metastasis 
AND prostate cancer

•7,780
•5,450

PLAU •PLAU gene AND bone metastasis
•PLAU gene AND bone metastasis 
AND prostate cancer

•20,700
•20,600
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Future studies and therapeutic approaches in the area of PCa 
bone metastases may benefit from the knowledge obtained from 
this study. To establish the identified genes’ and interactions’ 
roles in disease progression, more experimental validation 
is required. The therapeutic potential of focusing on these 
important genes and pathways may also present interesting 
options for intervention. Our multidimensional analysis 

approach sheds light on the molecular intricacies of PCa 
bone metastasis. By combining information theory, network 
analysis, and miRNA-target interactions, we have identified 
candidate genes and pathways that warrant further investigation. 
These findings contribute to our understanding of the disease 
and provide a foundation for future research efforts aimed at 
improving the diagnosis and treatment of PCa bone metastasis.

Figure 7: Graph representing topological parameters using power law (a) Graph between neighborhood connectivity and clustering coefficient, 
(b) Graph between topological coefficient and clustering coefficient, and (c) closeness coefficient and degree

Figure 6: Four Clusters (a-d) developed by ClusterViz red color nodes depict seed genes and green color nodes depict added genes.

a

b d

c

a b c



Bhardwaj, et al.: Identification of Biomarker from Prostate Cancer Bone Metastasis

12International Journal of Health Sciences
Vol. 18, Issue 3 (May - June 2024)

Conclusion

In this study, we harnessed the power of bioinformatics 
and computational methodologies to dissect the intricate 
molecular landscape underpinning bone metastases in 
PCa, utilizing the GSE26964 dataset as our primary source 
of information. Employing a multi-faceted approach that 
integrates information theory, MI analysis, and network-based 
investigations, we have made substantial strides in unraveling 
the underlying complexities of this critical pathological 

process. Our analysis commenced with the identification of 
DEGs, a crucial step in deciphering the molecular signature of 
PCa bone metastasis. Leveraging the HCMDB, we rigorously 
identified and selected DEGs that held significant promise 
for further exploration. Subsequently, we delved into the 
regulatory realm of miRNA-mediated gene expression control 
by leveraging miRTarBase to elucidate target genes among 
the DEGs. This step provided us with invaluable insights into 
the post-transcriptional regulatory networks operating within 
the context of bone metastases. Our investigation extended 
to the construction of a comprehensive gene-gene interaction 
network, representing a dynamic view of interplay among 
the DEGs. Network analysis, underpinned by centrality 
traits such as degree, clustering coefficient, closeness, and 
betweenness centrality, unveiled the pivotal roles played by 
genes such as ABCB1, KRAS, CDKN1A, and PLAU in the 
regulatory hierarchy of PCa bone metastasis. These findings 
underscore their potential significance as key orchestrators 
in disease progression. Furthermore, a noteworthy discovery 
arose in the form of CCDN1, identified as an additional 
interaction with DEGs. This discovery, substantiated by 
Google Scholar citations and corroborated through multiple 
search methods, introduces CCDN1 as a pivotal player in 
the molecular landscape of PCa bone metastasis. Our results 
indicate that CCDN1 warrants serious consideration as the 
most likely target protein based on the insights gleaned from 
this study. Our study demonstrates the synergistic power 
of information theory, MI analysis, and graph theory, in 
conjunction with miRNA data, in the systematic identification 
of key targets and associated pathways. By taking this 
integrative approach, we have significantly advanced our 
comprehension of the molecular intricacies underlying PCa 
bone metastasis, providing a foundation for future research 

Figure 9: Network between four selected DEGs (red color) and one 
added gene, CCND1 (green color)

Figure 8: Expression profile of four significant genes, (a) CDKN1A, (b) ABCB1, (c) KRAS, and (d) PLAU identified based on centrality 
parameters

a

c d

b
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endeavors and therapeutic interventions in this critical area 
of oncology.
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