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Zingerone mitigates metabolic dysfunction and alters pro-
opiomelanocortin gene expression in offspring of high-fat 
diet-fed pregnant wistar rats

Introduction

The perinatal phase has been considered as a crucial period 
of growth and development as a mother’s nutritional status 
during this period can change the developmental path of her 
offspring and consequently affecting their long-term health 
and behavior.[1-3] In line with the hypothesis formulated by 
Developmental Origins of Health and Disease, the paradigm 
of future diseases is laid during the developmental periods of 
pregnancy and lactation.[4,5] Evidence gathered from a variety 
of studies involving both humans and animals has shown 
that maternal consumption of a high-fat diet (HFD) during 
pregnancy predisposes the offspring to the development of 
metabolic disorders such as obesity, dyslipidemia, diabetes, 
insulin resistance, hypertension, etc., later in life[6,7] by 

malprogramming of the appetite-controlling regions of 
the hypothalamus which regulates energy homeostasis, 
specifically the pro-opiomelanocortin (POMC), influenced 
by epigenetics.[7,8]

Metabolic dysfunction refers to dysregulations in body’s 
metabolic pathways such as insulin resistance, abnormal 
lipid metabolism, and inflammation, which can lead to 
metabolic syndrome (MetS) when these dysfunctions occur 
together.[9] MetS, marked by hypertension, obesity, high 
blood glucose, high triglycerides, and low HDL cholesterol, 
significantly raises the risk of developing cardiovascular 
diseases and type 2 diabetes. Each component of MetS 
contributes to increased morbidity and mortality by promoting 
inflammation, endothelial dysfunction, and other risk factors 
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POMC gene expression was inhibited with 100 and 200 mg/kg of zingerone.
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disorders in the offspring, possibly by its influence on the anorexigenic genetic makeup 
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for these diseases.[9,10] The global prevalence of MetS varied 
from 12.5% to 31.4% based on its definition.[11] Globally, 
the incidence of obesity and other associated metabolic 
dysfunction has reached epidemic levels, posing significant 
public health issues.[12-14] The imminent increase in the 
incidence of obesity and metabolic dysfunction with its 
disease burden in both adults and the children has posed 
significantly greater demand on our healthcare system, 
scientists, and its sufferers.[15] Furthermore, the sufferers of 
metabolic dysfunctions may however be also burdened by 
the expensive cost of the available treatment which poses no 
cure other than its management.[16]

Ginger is a powerful antioxidant with minimal side effect 
and often times, consumed by pregnant women due to 
their belief that it reduces nausea and vomiting during 
pregnancy.[17] Zingerone, a bioactive phytochemical fraction 
present in a significant amount of about 9.25% in ginger 
(a popularly known food spice), has been known to have potent 
pharmacological properties and has demonstrated antiobesity, 
antioxidant, and anti-inflammatory effects[18] which makes it a 
possible candidate that could protect against long-term adverse 
metabolic outcomes secondary to maternal HFD. Zingerone’s 
potent antioxidant properties which aid in combating various 
significant diseases made it the focus of this study.[17]

However, it is not known if its consumption during pregnancy 
can restore the malprogrammed POMC neuron in the 
hypothalamic feeding circuit to restore the altered energy 
homeostasis that forms the mechanism for the development 
of obesity and other metabolic dysfunctions in offspring later 
in life when exposed to maternal nutritional perturbations 
during pregnancy and lactation.[17,19] This research aimed to 
explore its potential in reprogramming altered hypothalamic 
genes, which are key to the development of obesity and 
subsequently contribute to other metabolic disorders, 
specifically in offsprings exposed to maternal nutritional 
perturbations during pregnancy and lactation.[17,19] The results 
of this study are expected to pave the way for developing 
therapeutic strategies to prevent obesity and promote healthier 
outcomes for individuals who are obese or at risk of obesity. In 
addition, it aims to provide a deeper understanding of whether 
zingerone can reverse maladaptive changes in a specific area of 
hypothalamic feeding circuit, thereby restoring altered energy 
balance – a key mechanism in the development of obesity and 
related metabolic disorders in offspring later in life.

This research holds potential clinical relevance for women 
of reproductive age who are overweight or obese and also 
for offspring of obese mothers. Furthermore, its findings will 
serve as a foundation for future studies and contribute valuable 
material for literature reviews.

This study therefore investigated whether or not zingerone can 
attenuate metabolic dysfunctions and the malprogramming 
of the POMC hypothalamic regulatory regions caused by 

maternal nutritional perturbations during pregnancy in the 
young adult offspring.

Materials and Methods

Experimental animals and grouping
In this study, 30 female Wistar rats weighing 170–200 g were 
acquired from the Animal Facility of the Faculty of Basic 
Medical Sciences, University of Nigeria, Enugu Campus. 
The rats were housed in clear plastic cages in a controlled 
environment set to 25 ± 1°C with a 12-h light/dark cycle. 
They had continuous access to standard rodent pellets and 
water throughout the study. The animals were allowed to 
acclimatize for 2 weeks before the commencement of the 
study.

Following acclimatization, the rats were randomly assigned to 
different treatment groups. The study adhered strictly to ethical 
standards, including the 2000 Helsinki Declaration guide for 
the care and use of laboratory animals, which was in line with 
the university’s animal rights policies.

Drugs and chemicals
Zingerone was purchased from Sigma-Aldrich, MO USA, 
and was given orally at doses of 50, 100, and 200 mg/kg 
after dissolving in sterile distilled water. All other chemicals 
and reagents were of high analytical grade. The route of 
administration and dosages used in this study were based on 
results obtained from previous studies.[20,21]

Mating arrangement
The estrus cycle of the female rats was monitored daily under 
light microscopy. The estrus cycle stages were determined 
using vaginal smears based on the method by Park et al.[22] 

Daily, subjects underwent vaginal smearing, confirming a 
consistent estrus cycle of 4 or 5 days, observed over at least 
two cycles, before being included in the study. For the smearing 
process, approximately 200 µL of physiological saline was 
introduced into the vagina with an eye dropper. Vaginal mucus 
and epithelial cells were collected, spread on a slide, dried on 
a warm plate at about 40°C for 10–20 min, then stained with 
3% Giemsa solution, rinsed with water, and dried. An optical 
microscope was used to examine keratinocyte size, endometrial 
cells, presence of nuclei, and leukocytes. The stages were 
identified as follows:

Proestrus: Few red and white blood cells were present; cells 
were large and round with many nucleated cells.

Estrus: Nuclei were not visible; cells were large, primarily 
cornified epithelial cells, some of which appeared clustered.

Metestrus and Diestrus: High presence of red and white blood 
cells, few nucleated epithelial cells, and rare keratinocytes.
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Male Wistar rats were introduced at proestrus at a ratio of 
2 females to 1 male. These rats remained in the same cages 
until pregnancy was confirmed.

Confirmation of pregnancy
The mated female rats were observed daily at early hours and 
late evenings for vaginal plugs and pregnancy was confirmed 
by vaginal smear using vaginal swap on each of the mated 
female rats under a microscope containing normal saline. The 
first day of pregnancy was defined as the day spermatozoa were 
detected in the vaginal smear of mated female rats.[23]

Once pregnancy was confirmed, animals were randomly 
divided into five (5) groups of six rats each. Group I, which 
served as control, was fed normal rat chow (12% fat, 60% 
carbohydrate, and 28% protein) throughout pregnancy 
period of 21 days while group 2 served as negative control 
and was maintained on a HFD;(60% fat, 20% carbohydrate, 
and 20% protein) throughout pregnancy period of 21 days[24] 
Groups 3–5 were maintained on an HFD and received 50, 100, 
and 200 mg/kg b.wt of zingerone, respectively, throughout 
pregnancy period of 21 days.

Weaning
Throughout gestation, dams were maintained on their 
respective diets. At delivery, the dams were returned to the 
standard diet with their groupings still maintained. Litters 
were culled to equal sizes for the lactation period of 21 days. 
The offspring were studied based on maternal diets. Each 
of the pups was weaned on postnatal day (PND) 21[25] and 
placed on standard chow from PND 21 to 42. Evaluation of 
the offspring biochemical analysis and gene expression was 
done on PND 42.

Measurement of body weights
Offspring weekly body weights were measured and recorded 
weekly from birth to PND 42 using a digital weighing balance 
(DIGI 520, Japan).[26]

Measurement of food intake
The offspring daily food intake was calculated using the 
method of Katchy et al.,[27] by giving each of the rats a known 
weight of feed after which the remaining feed was weighed 
the next day and subtracted from the amount of feed given to 
the rat the previous day:

Food intake (g) = Amount given (g)–Amount remaining (g).

Biochemical measurement
At PND 42, blood samples of the offspring per group were 
collected by cardiac puncture into specimen bottles and 
allowed to clot and separated by centrifugation. The serum was 
used for the determination of insulin level (uIU/mL) using the 

enzyme-linked immunoassay (ELISA). The determination of 
triglyceride and cholesterol levels was by glycerol phosphate 
oxidase method using Enzymatic Colorimetric Diagnostic Kits 
from Randox Laboratories, United Kingdom.[28] To estimate 
glucose level, the tail vein was pricked and followed by blood 
collection and monitoring using glucometer (Contour®TS, 
India).

Serum leptin and ghrelin measurement
After an overnight fast, which lasted for 12 h, blood samples 
of the pups were collected into EDTA bottles from the tail 
vein on PND 42. They were allowed time for clotting and 
centrifuged. Both serum leptin and ghrelin were done using 
the ELISA kit.[26]

POMC gene expression in hypothalamus by 
reverse transcription polymerase chain reaction 
(RT-PCR)
The hypothalamic tissue was submerged in DNA/RNA 
Shield™ and homogenized. Total RNA was extracted 
using the Quick-RNA Miniprep Plus Kit (Zymo Research, 
Catalog No. R1057). The quality and quantity of the 
extracted RNA were measured using a NanoDrop (Thermo 
Scientific™ NanoDrop™ One Microvolume Ultraviolet-
Visible Spectrophotometer). Complementary DNA was 
synthesized from 1 µg RNA using LunaScript® RT SuperMix 
Kit (New England Biolabs, USA) following manufacturer’s 
protocol. RT-quantitative PCR (qPCR) reactions for POMC 
were performed using SYBRLuna® Universal qPCR Master 
Mix (New England Biolabs, USA) on a CFX-96 real-time 
PCR (Bio-Rad, USA) according to the manufacturer’s 
instructions. Hprt was used as the reference gene and the 
expression of the target gene was normalized to the Hprt 
levels.[8]

Statistical analysis
Results were expressed as mean ± standard error of mean. 
Difference between all studied groups were analyzed using 
analysis of variance (ANOVA), followed by student Bonferroni 
post hoc test to compare means across groups using the 
Statistical Package for the Social Sciences software version 25. 
Values of P < 0.05 were taken as statistically significant.

Results

Effect of maternal zingerone administration on 
body weight in offspring of pregnant HFD
The effect of zingerone on weekly body weight in offspring of 
rats exposed to HFD during pregnancy from birth to PND 21 
and from PND 28 to 42 is shown in Figure 1a and b. One-way 
ANOVA showed that HFD significantly (P < 0.05) increased 
body weight in the offspring when compared with normal 
control group. Bonferroni post hoc test showed that 50, 100, 
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and 200 mg/kg zingerone significantly (P < 0.05) reduced the 
body weight relative to HFD control rats.

Effect of maternal zingerone administration on 
food intake in offspring of pregnant HFD-fed 
wistar rats
The effect of zingerone on food intake in offspring of rats 
exposed to HFD during pregnancy is shown in Figure 2. 
One-way ANOVA showed that HFD significantly (P < 0.05) 
increased food intake in the offspring when compared with 
normal control group. Bonferroni post hoc test showed that 50, 
100, and 200 mg/kg zingerone further significantly (P < 0.05) 
increased the food intake relative to HFD control rats.

Effect of maternal consumption of zingerone on 
blood glucose and insulin levels in offspring of 
pregnant HFD-fed wistar rats
As shown in Figure 3a and b, maternal HFD significantly 
(P < 0.05) increased the blood glucose [Figure 3a] and insulin 
[Figure 3b] levels in the offspring when compared with normal 
control group. Maternal consumption of zingerone (50 mg/kg, 
100 mg/kg, and 200 mg/kg) significantly decreased blood 

glucose [Figure 3a] and insulin [Figure 3b] levels when they 
were compared to HFD control group.

Zingerone reverses the effect of maternal 
HFD consumption during pregnancy on total 
cholesterol and triglycerides concentrations in 
offspring

The effect of zingerone on total cholesterol and triglycerides in 
offspring of rats exposed to HFD during pregnancy is shown 
in Figure 4a and b. One-way ANOVA showed that HFD 
significantly (P < 0.05) increased the levels of total cholesterol 
[Figure 4a] and triglycerides [Figure 4b] in the offspring when 
compared with normal control group. Bonferroni post hoc 
test showed that administration of 50, 100, and 200 mg/kg 
zingerone significantly (P < 0.05) reduced the concentrations 
of total cholesterol and triglycerides in the offspring relative 
to HFD control rats.

Effect of maternal zingerone administration on 
leptin and ghrelin concentrations in offspring 
of pregnant HFD-fed Wistar rats

Figure 5a and b shows the effect of maternal zingerone 
consumption on leptin and ghrelin levels in offspring of rats 
exposed to HFD during pregnancy when it was compared 
with the normal control and HFD control groups. The result 
revealed that maternal HFD significantly (P < 0.05) increased 
leptin [Figure 5a] but reduced ghrelin [Figure 5b] levels in 
the offspring when compared with normal control group. 
Bonferroni post hoc test showed that administration of 50, 
100, and 200 mg/kg zingerone significantly (P < 0.05) reduced 
the concentrations of leptin [Figure 5a] but increased the 
concentrations of ghrelin [Figure 5b] in the offspring relative 
to HFD control rats.

Figure 2: Effect of maternal zingerone administration on weekly 
food intake in offspring of pregnant HFD-fed wistar rats from 
weaning to PND 42. Bars represent the mean ± standard error of 
mean of 6 animals per group. aP < 0.05 compared to normal control 
group, bP < 0.05 compared to HFD control group (one-way analysis 
of variance followed by Bonferroni’s post hoc test). PND: Postnatal 
day, HFD: High-fat diet

Figure 1: Effect of maternal zingerone administration on body weight 
in offspring of pregnant HFD from birth to PND 21(a) and from 
PND 28 to PND 42 (b). Bars represent the mean ± standard error of 
mean of 6 animals per group. aP < 0.05 compared to normal control 
group, bP < 0.05 compared to HFD control group (one-way analysis 
of variance followed by Bonferroni’s post hoc test). PND: Postnatal 
day, HFD: High fat diet

b

a
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Effect of maternal zingerone administration on 
messenger RNA relative expression of POMC in 
offspring of pregnant HFD-fed wistar rats
The effect of zingerone on the expression of POMC in 
offspring of rats exposed to HFD during pregnancy is shown 
in Figure 6. One-way ANOVA showed that HFD significantly 
(P < 0.05) increased POMC expression in the offspring when 
compared with normal control group. Bonferroni post hoc test 
showed that 100 mg/kg and 200 mg/kg zingerone significantly 
(P < 0.05) reduced its expression relative to HFD control rats.

Discussion

This study investigated the possibility of zingerone, a dietary 
compound in ginger as potential therapy for attenuating 
metabolic disorders and reprogramming the malprogrammed 
hypothalamic energy regulatory circuit in offspring of high-
fat-fed wistar rats during pregnancy. The composition and 
quantity of the maternal diet wield substantial influence 
over the metabolic health and growth of their offspring[29] 
Obesity, a widespread and pressing global public health 
challenge, is characterized by a high prevalence affecting 
populations in both developed and developing countries, 
significantly increasing susceptibility to chronic illnesses.[30] 

Figure 4: Effect of zingerone on total cholesterol (a) and triglyceride 
(b) concentrations in offspring of pregnant HFD-fed wistar rats. Bars 
represent the mean ± standard error of mean of 6 animals per group. 
aP < 0.05 compared to normal control group, bP < 0.05 compared 
to HFD control group (one-way analysis of variance followed by 
Bonferroni’s post hoc test). HFD: High-fat diet

b

a

Figure 5: Effect of zingerone on leptin (a) and ghrelin (b) 
concentrations in offspring of pregnant HFD-fed wistar rats. Bars 
represent the mean ± standard error of the mean of 6 animals per 
group. aP < 0.05 compared to normal control group, bP < 0.05 
compared to HFD control group (one-way analysis of variance 
followed by Bonferroni’s post hoc test). HFD: High-fat diet

b

a

Figure 3: Effect of zingerone on blood glucose (a) and insulin 
(b) levels in offspring of pregnant HFD-fed wistar rats. Bars represent 
the mean ± standard error of mean of 6 animals per group. aP < 0.05 
compared to normal control group, bP < 0.05 compared to HFD control 
group (one-way analysis of variance followed by Bonferroni’s post 
hoc test). HFD: High-fat diet

b

a



Adeniyi, et al.: Zingerone, metabolic dysfunction, and gene expression

22International Journal of Health Sciences
Vol. 19, Issue 2 (March - April 2025)

According to global obesity prevalence statistics, over 39% 
of adults worldwide were classified as overweight, and over 
13% were obese. These numbers underscore the urgency of 
addressing this health issue.[31] Concurrently, the Food and 
Drug Administration-approved anti-obesity medications, 
although available, exhibit limited effectiveness, thus primarily 
serving as short-term therapeutic interventions.[32] Given these 
limitations, this study tried to explore the effect of zingerone 
in ameliorating the metabolic consequences that develop in 
offspring as a result of maternal nutritional perturbations 
during pregnancy.

The current study found that maternal consumption of an HFD 
during pregnancy significantly increased the body weight 
of the offspring compared to the normal control offspring 
whose dams did not consume HFD. This contradicts Wang 
et al.,[33] who reported lower body weights in offspring of 
mothers on a HFD compared to those on a control diet, 
regardless of when the diet was consumed. Conversely, studies 
by Tellechea et al.,[34] and Harmancıoğlu and Kabaran,[35] 

observed increased fetal weight gain due to maternal HFD, 
potentially caused by changes in nutrient transfer (fat and 
glucose) through the placenta.[36,37] These changes might lead 
to permanent alterations in fetal neuroendocrine pathways in 
the hypothalamus, affecting appetite regulation and energy 
metabolism in the offspring. Discrepancies between these 
studies and ours could be attributed to differences in the 
HFD components, exposure periods, and evaluation timings 
in the offspring.

Findings from this study showed that zingerone treatment 
resulted in a significant dose-dependent decrease in body 
weight of the offspring from birth to PND 42 compared to the 
untreated offspring of HFD control dams. This aligns with Han 
et al.,[38] who noted zingerone’s lipolytic properties in HF-fed 
animals. The weight decrease may be due to zingerone’s ability 

to enhance the breakdown of stored fat, serving as an energy 
reservoir by boosting basal lipolysis and isoprenaline-induced 
lipolysis in adipocytes.[39] This process involves hormone-
sensitive lipase, which catalyzes the conversion of triglycerides 
(fat molecules) into free fatty acids and glycerol.[40] The 
resultant weight-lowering effect of zingerone may also suggest 
that zingerone-induced thermogenesis which enhanced energy 
expenditure and possibly promoted fat oxidation which aided 
the weight loss.[41]

In this study, maternal consumption of HFD during gestation 
increased food intake in the offspring, consistent with the 
study of Parlee and Mac Dougald.[42] They suggested that 
HFD consumption during gestation might promote obesity in 
progeny by altering hypothalamic neuropeptide production, 
increasing hyperphagia in offspring. Findings from this study 
showed that treatment with zingerone further increased the 
food intake in these offspring possibly by a mechanism that 
depends on gastric motility. Increased gastric motility speeds 
up digestion hence, increased hunger sensations which 
stimulates appetite frequently.[43] The observed hyperphagia 
following treatment with zingerone may also suggest the 
stimulatory effect of zingerone on appetite. Ginger has 
been reported to influence the hunger-stimulating hormone 
ghrelin, which reduces sensitivity to satiety signals and leads 
to increased cravings and appetite.[44] The increased food 
intake recorded in this study did not result in weight gain, 
possibly indicating higher excreta volume, though this was 
not evaluated in this study.

Findings from this study showed that maternal consumption 
of HFD during gestation elevated glucose and insulin 
concentrations in the offspring; this is consistent with 
previous reports.[8,45-47] The decrease in the serum levels 
of glucose and insulin in zingerone-treated groups may be 
mediated by the antioxidative and insulin-sensitizing actions 
of zingerone which enhances insulin sensitivity by reducing 
oxidative stress, a key contributor to insulin resistance.[18] 
The regeneration of pancreatic β-cells and stimulation of 
insulin release are attributed to zingerone’s strong antioxidant 
properties.[18,48] Zingerone’s antioxidant properties reduce 
oxidative stress and inflammation which are associated 
with insulin resistance.[18] Zingerone’s hypoglycemic effect 
may also be due to its stimulatory effect on AMP-activated 
protein kinase in the muscle cells which enhances glucose 
uptake independent of insulin.[49] Zingerone has also been 
known to improve insulin sensitivity by modulating insulin 
receptor function.[17] This allows cells to more efficiently 
uptake glucose from the bloodstream, thereby lowering blood 
glucose concentration.

Elevated levels of serum total cholesterol and triglycerides 
observed in the study are in agreement with the study of de 
las Heras et al.[50] indicating that maternal nutrition alterations 
during pregnancy and lactation can pose health risks and 
promote cardiovascular and metabolic diseases later in life. 

Figure 6: Effect of maternal zingerone administration on messenger 
RNA relative expression of POMC in offspring of pregnant HFD-
fed wistar rats. Bars represent the mean ± standard error of mean of 
6 animals per group. aP < 0.05 compared to normal control group, 
bP < 0.05 compared to HFD control group (one-way analysis of 
variance followed by Bonferroni’s post hoc test). HFD: High-fat diet, 
POMA: Pro-opiomelanocortin
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Remarkably, our study showed that 50 mg/kg, 100 mg/kg, and 
200 mg/kg zingerone reversed the elevated levels of serum 
total cholesterol and triglycerides in the offspring of HFD 
fed dams. This reduction is consistent with findings from 
Geng et al.[51] and Wang et al.[52] which may be mediated 
by transcription factors, such as peroxisome proliferator-
activated receptors, adenosine monophosphate-activated 
protein kinase, and nuclear factor kappa B.[52] Findings from 
this study indicate that zingerone supplementation increased 
ghrelin levels, aligning with previous research of Mansour 
et al.[41] suggesting ginger’s impact on ghrelin. Since zingerone 
is the major pungent component of ginger, we postulate that 
it is responsible for this effect. This may be dependent on a 
mechanism linked to lowering effect of oxidative stress in 
gastric tissues, which potentially stimulates the environment 
that regulates ghrelin as a result of zingerone’s strong 
antioxidant properties.[53]

In this study, maternal HFD led to hyperleptinemia in 
the offspring; this is in agreement with the studies of 
Ramamoorthy et al.[8] and Vasselli et al.[54] Zingerone treatment 
reversed this effect possibly through combined mechanisms 
of enhanced lipid metabolism and reduced oxidative stress 
and inflammation.[55] Zingerone promotes lipid oxidation and 
reduces fat accumulation, thereby decreasing adipose tissue, 
which is the primary source of leptin. As fat stores break down, 
leptin production from the adipose tissue also declines.[55] 
Chronic inflammation and oxidative stress are known to 
disrupt leptin signaling, resulting in elevated leptin levels 
and leptin resistance, especially in obesity.[56] Zingerone’s 
antioxidant properties help mitigate oxidative stress and 
reduce pro-inflammatory cytokines, which may improve 
leptin sensitivity and allow for a decrease in circulating leptin 
levels.[57]

Leptin stimulates the anorexigenic POMC gene while 
inhibiting the orexigenic neuropeptide Y (NPY).[58] Maternal 
HFD during pregnancy/lactation can impair leptin sensitivity 
and gene expression regulating feeding/satiety in offspring.[35] 
The current study found that POMC expression was increased 
in offspring of HFD control group in comparison with the 
normal control group which is in contrast with the findings 
of Ramamoorthy et al.[8] Leptin resistance in HFD control 
led to inhibited POMC expression in the ARC, resulting 
in weight gain,[59] consistent with this study’s findings of 
hyperleptinemia and leptin resistance in the offspring of HFD 
control group. Treatment with 100 mg/kg and 200 mg/kg 
zingerone reduced the expression of POMC in comparison 
with the offspring in the HFD control group in our study. At 
present, there is limited research on the impact of zingerone 
on POMC but findings from this study may suggest that 
zingerone’s effects on improving insulin and leptin sensitivity 
and also antioxidant properties may help optimize POMC 
neuron response. POMC neurons in the hypothalamus are 
involved in appetite and energy balance, with higher levels 
typically leading to reduced food intake and increased energy 

expenditure.[8] Zingerone’s anti-inflammatory effects may 
indirectly influence POMC expression by creating a healthier 
cellular environment, as inflammation and oxidative stress 
have been shown to impair POMC signaling[60] By reducing 
these factors, zingerone might support normalized POMC 
function.

Limitations

The study evaluated specific metabolic indices, possibly 
neglecting important metabolic effects and markers such as 
low-density lipoprotein, high-density lipoprotein, skeletal 
muscle glycogen synthase, and hormone-sensitive lipase 
which may increase the risk of metabolic dysfunctions; 
second, the study did not evaluate all the relative expression 
of the hypothalamic appetite-regulating genes such as NPY 
thereby restricting the immediate applicability of the findings 
to human population; the time of evaluation of the biochemical 
parameters in this study may also contribute to varied outcomes 
leading to biased conclusions. It is therefore suggested that 
future research could address these limitations.

Conclusion

Our study demonstrates that zingerone as a maternal 
nutritional supplement offers protection against metabolic 
disorders in offspring subjected to maternal nutritional 
imbalances during pregnancy. This protective effect is 
attributed to mechanisms involving the regulation of 
anorexigenic genetic pathways and enhanced antioxidant 
defense. These results further reinforce the potential role of 
antioxidants and adaptogens in mitigating the developmental 
programming of metabolic disorders.
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