Analysis of human brain by magnetic resonance imaging using content-based image retrieval
Abstract
Objective: Content-based image retrieval (CBIR) is the most suitable and alternative method for older text searches that use keywords. This article aims to improve feature extraction as well as matching techniques designed for more accurate and precise CBIR systems, especially for brain scan images associated with various brain diseases and abnormalities. Tests should be described at an appropriate success rate.
Methods: Various methods of producing medical images are discussed, and examples of biological applications are given. The discussion emphasizes as an introduction to CBIR the new method of echo-planar imaging, which is fully described. We have done here many methods related to digital image processing and we had developed a code for retrieving everything automatically. This application has been developed in Matlab software.
Results: Testing the correctness and effectiveness of the system evolved becomes more important when the system is going to be used in real-time and more when it is for humankind, i.e., medical diagnosis. Nowadays, our science and technology areas as develop as we can say that we have such advanced medical equipment so that our thought and program can be capable that it is giving us useful results. Determining if whether the two images are identical or not, it depends on the point of view of the person.
Conclusions: In this paper, the outcome of feature extraction and matching by setting cutoff limit and threshold is pretty promising. Further studies can be done apart from computed tomography scans for a more generalized CBIR system.
Keywords:
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).